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Algebraic recursive determination of matrix elements from 
ladder operator considerations 

N Bessis and G Bessis 
Laboratoire de Physique des Lasers, Universite Paris-Nord, AV J-B Cltment, 93430 
Villetaneuse, France: 

Received 16 April 1987, in final form 19 June 1987 

Abstract. A manufacturing process is proposed for calculating matrix elements of families 
of basic functions Q,(x) between the eigenfunctions \y;(x) of factorisable equations. This 
procedure, well adapted for computer algebra, relies on the well known property that 
solutions of factorisable equations are also solutions of a couple of first-order difference- 
differential equations. As a particular case, it is applied to the determination of closed 
form expressions of the ‘curved’ hydrogenic pseudoradial integrals which are needed when 
studying space-curvature effects in atomic structure calculations. Several other applications 
are pointed out. 

1. Introduction 

The computation of matrix elements (j‘m’l Q(x) l jm) between solutions *Irf”(x) of 
factorisable equations is of particular interest in quantum physics. Indeed, in many 
cases, the wavefunctions are usually expanded on the basis of the eigenfunctions *’,”(x) 
of model problems which usually lead, or are amenable to, the solution of factorisable 
equations. Without being exhaustive, let us recall that the associated spherical har- 
monics YF and generalised spherical harmonics Yyy ,  the symmetric top functions 
0;” , the Gauss hypergeometric, Whittaker and Bessel functions, the harmonic oscil- 
lator, Morse oscillator, Poschl-Teller, Manning-Rosen and Rosen-Morse diatomic 
vibration-rotation functions, the hydrogenic and generalised Kepler functions and 
many others are solutions of factorisable equations (Infeld and Hull 1951). Let us 
also mention that the Dirac radial functions in the usual Euclidean space (Infeld and 
Hull 1951) and also in a space of constant curvature can be expressed in terms of 
solutions of factorisable equations (Bessis et a1 1984). 

The concept of ‘ladder operators’ (for instance, the J’ operators of angular momen- 
tum theory), being based on commutation rules and hermiticity, is a familiar one and 
operators of the form K(x)Td /dx  have also been used in simple approaches to 
supersymmetry (see, for instance, Killingbeck 1986). Let us briefly recall that, when 
a given equation is factorisable, one can take advantage of the existence of ladder 
operators H: acting on the eigenfunctions V,?’(x) in order to obtain any (j’m’l Q(x) Ijm) 
matrix elements in terms of the ‘key’ matrix elements ( j y ’ l  Q(x) lj) (Bessis et a1 1973, 
1975, Hadinger er a1 1974). Nevertheless, this procedure, mainly using the ladder 
properties of the PIrf” functions, may lead to somewhat cumbersome formulae involving 
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hardly reducible double summations, even for the caseJ of diagonal (j‘ = j, m’ = m )  
matrix elements. These summations may conceal a possibly simpler analytical depen- 
dence in the quantum numbers. On the other hand, one often has to calculate matrix 
elements of different Q(x)  operators which either can be directly regarded as belonging 
to a set of Q,(x) operators satisfying ladder relations or, alternatively, which can be 
expanded on such a basis QI. Although they were not explicitly demonstrated, such 
relations between the Q, ( x )  functions were underlying our previous techniques yielding 
closed form expressions of the fine and hyperfine structure parameters in a space of 
constant positive curvature (Bessis and Bessis 1983) and also of the Dirac-Coulomb 
radial r‘ integrals (Bessis et a1 1985). 

In the present paper, it is shown that, when combining the different ladder relations 
satisfied both by the q:(x) eigenfunctions and by a naturally adapted set of Q,(x) 
functions, one obtains algebraic formulae allowing an easy recursive computation of 
the ( j ’m’ l  Q , ( x ) l j m )  matrix elements between eigenfunctions of any factorisable 
equation (types A-F within the Infeld-Hull nomenclature). 

After a necessary and brief recall of the factorisation scheme, the ladder properties 
to be satisfied by the Q,(x) functions are given and the associated algebraic recursive 
formulae relating the (j’m’l Q ( x )  Ijm) matrix elements are derived. As an illustrative 
example, the determination of closed form expressions of the hydrogenic pseudoradial 
integrals (nl 1 (sin x) ’  exp(ixt) I nl) and (nl I (sin x ) ‘  exp(iXt) 1 nl - 1) in a space of constant 
curvature is carried out. Indeed, the original motivation of setting up this technique 
was the need of analytical expressions of the curved-space parameters encountered 
when studying space-curvature effects in atomic structure calculations. Several other 
applications of the procedure are pointed out. 

2. Factorisation scheme 

After separating the variables, many model problems lead to the resolution of Sturm- 
Liouville differential equations which, by an adequate transformation of variable and 
function, can be always reduced to the standard form 

(d2/dx2+ V(x, m)+A,)Y:(x)=O (1) 

with associated boundary conditions (x,  x x2) 

and where m is assumed to take successive discrete values labelling the eigenfunctions: 
m=m, ,  m , + l ,  m,+2 , . . .  . 

Such an eigenequation (1) is factorisable when it can be replaced by each of the 
following two differential equations: 

where El:= K(x,  m ) T d / d x  are the ladder operators; K(x,  m )  and L ( m )  are respec- 
tively the ladder and factorisation functions. 
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As stated by Schrodinger (1940b, 1941) and Infeld and Hull (1951), the eigenfunc- 
tiolis 9; are then solutions of the following pair of difference-differential equations 

( K  (x, m )  - d/dx)\VJ"-' = .AJ( m)*Il,m 

(K(x ,  m)+d/dx)*; = . i J ( m ) ' P , T 1  (4) 

where AJ( m )  = (AJ  - L( m)) '" .  
These equations (4) allow the determination of any eigenfunction *;(XI, step by 

step, downward or upward, from the knowledge of any one of them and, particularly, 
from the knowledge of the 'key' eigenfunction which is the solution of a first-order 
differential equation. 

For class I problems, i.e. when L(  m )  is an increasing function of m, the eigenvalues 
are A, = L ( j +  1). The necessary condition for the existence of quadratically integrable 
solutions, i.e. the quantisation condition is j - m = U = integer 2 0. The 'key' eigenfunc- 
tion ( U  = 0) is a solution of the first-order differential equation 

(K(x ,  j +  1) -d/dx)V;(x)  = 0. (5) 

For class I 1  problems, i.e. when L ( m )  is a decreasing function of m, AI = L ( j ) ,  the 
quantisation condition is m - j = U = integer z 0 and the 'key' eigenfunction is a solution 
of the first-order differential equation 

(K(x ,  j )  + d/dx)*\Ir:(x) = 0. ( 6 )  

Infeld and Hull (1951) have found six fundamental factorisation types and have 
given the expressions of the V(x, m 1 potential functions and associated ladder K ( x ,  m )  
and factorisation L( m )  functions allowing the factorisation of the eigenequation (1). 
Possible extensions to other potential functions exist via the 'artificial' or 'embedded' 
factorisation scheme (Schrodinger 1941, Infeld and Hull 1951) or also via the 'perturbed 
ladder operator method' (Bessis er a1 1978, 1980, 1981, 1983). Let us now consider 
the calculation of matrix elements involving the V y ( x )  functions. 

3. Recursive determination of matrix elements 

As fdr as one is concerned with the calculation of matrix elements, it seems quite 
natural to consider, at once, the ladder properties of the densities ('U,? qy) rather thar, 
the individual ladder properties of the *; eigenfunctions themselves. Combining 
together (4) for 9; and with their companions for Vy and 9," -', one can write 

(d /dX)(V;qy)=-(K + K')*yV;+-~V;*;-'+A'Vy-'Vy 

(d/dx)( 'P? -'*;-I) = ( K  + K ' ) 9 y  -"€';-' - A 9 ;  -"Py - ,4Vy Y,?-' 
(d /dx) (Vy Yy-') = ( K  - K')"y 'If;-'- ,497 '4': +A"€; -'Vy-' 
(d/dx)(Vy -I*;) = - ( K  - K')VrJ" -"€'; + A*; -"Py-' -A'*? 97 

(7) 

wheretheshortenednotation K = K ( x , m ) ,  K ' =  K ( x ,  m') ,A=A,(m)andA'=A,(m' )  
is used. 

When left-multiplying both sides of (7) by a sufficiently regular and derivable 
function Q(x)  on the interval (x , ,  x2), integrating by parts and taking into account the 
vanishing conditions ( 2 )  at the bounds, one obtains the following relations between 
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X I - ,  

? ) I - ,  

;?)-I + 

matrix elements involving the Q(x)  function, its derivative dQ/dx and the product 

(m’l  dQIdx - ( K  + K ’ ) Q  1 m ) +  A(m’1 Q 1 m - 1)+ A(”- 11 Q 1 m )  = 0 

( m ’ -  1 / d Q / d x +  ( K  + K ’ ) Q /  m - l ) - , i ( m ‘ -  11 Q /  m) -A’(”/ Q1 m - 1) = 0 

(m’ (dQ/dx+(K - K ’ ) Q (  m - l ) - A ( m ’ (  Q (  m ) + A ( m ’ -  11 Q1 m- 1)=0 

( m ’ -  1 IdQ/dx - ( K  - K ’ ) Q  I m ) + A ( m ’ -  1 I Q 1  m - 1)- A’(m’1 Q I m )  = 0 

where ( m ’  1 Q I m )  = j:; 9: 9: Q( x)  dx. 
When considering a suitable set of functions Q,(x) such that both the derivatives 

dQ,/dx and the products K(x, m)Q,(x) can be written as finite expansions on the 
basis of the Q,(x) functions, the relations (8) can be easily transformed into algebraic 
recursive relations. Let us assume, for instance, that the following three-terms relations 
hold 

K(x, m ) Q ( x )  

(8) 

K(x, m)Q,(x) = a( t ,  m)Q,-I + b( t ,  m)Q,  + c ( t ,  m)Qrtl  
(9) 

dQt/dx= a ( t )Qi - l+P( t )Qi+  Y ( ~ ) Q , + I  

and let us set 

X l=[ ‘ i9yV,”Ql (x )dx  2 ) , = ~ “ 9 y V , ” ’ Q , ( x ) d x  

, I  3 = {  - 9 ~ - ’ 9 J n - 1 Q l ( x ) d x  
(10) 

V I  X I  

Y. 

‘2%, = IX: 9: - ’9yQ1(x)  dx. 
X I  

When building up a four-dimensional vector with the four integrals (10) and using (8) 
and (9),  one obtains, in matrix notation, the following three-terms recurrence relation 

BI 
0 

-A 
-A’ 

A , O  0 0 
O A 2 0  0 
0 O A 3 0  
0 0 O A 4  

IC, 
0 
0 
0 

+ 

0 A A’ 
B2 -A’ -A 
A’ B,  0 
.i 0 8 4  

X I + ,  

? ) I + ,  

8 , + 1  

B,+, 

= O  

where the following shortened notation is used: A ,  = a - a -a ’ ,  A,  = a + a  + U’ ,  A3 = 
a + a  -a ’ ,  B4= 
p - b + b’, C, = y - c -  c ’ ,  C, = y +  c+  c’, C3 = y +  c - c’, C,= y -  c+  c’, a = a(t,  m ) ,  a ’=  
a ( t ,  m ’), b = b ( t ,  M 1, b‘ = b ( t, m ’), c = c( t ,  m 1, c’ = c( t ,  m ’), a = a ( t ), /3 = P ( f ), y = 7 ( t 1, 
A = ( A J  - L ( m ) ) ” 2 ,  A ’ =  (A, ,  - L( m ’ ) ) ’ ’ 2 .  Note that the j dependence of the matrices is 
entirely contained, via A and A’, within the eigenvalue parameter Al .  

Let us add that if (Q,) is a suitable set of functions, the products F , ( x )  = g(x)Q,(x) 
generate another suitable set ( F , )  provided that dg/g = k(x) dx where k(x) has the 
same dependence in x as the ladder function K(x, m ) .  Of course, when applying the 
method to a given problem, one has to be careful in considering only F,(x) functions 
such that the product F , ( x ) ~ , ? ” ( x ) ~ ~ ( x )  still vanishes at the bounds x, and xz.  

A,=  o - a  +a ’ ,  B,  = P - b - b’, B z =  /3 + b+ b‘, B3 = p + b -  b’, 
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XI 

2, 
Y ,  

The recurrence formula (1 1) is valid for all factorisation types and  is well adapted 
for symbolic computation. It is, of course, quite useful for computing any (j 'm'l  Q, I j m )  
matrix element as soon as matrix elements corresponding to a particular value t = to 
are known. For several choices of the Q , (x )  functions, formula (1 l ) ,  followed by few 
algebraic manipulations, allows the determination of closed-form expressions of the 
diagonal ( j m  I Q, I j m )  and of the subdiagonal ( j m  I Q, ljm - 1) sets of integrals. 

Obviously, an  n-terms expansion (9) would lead to an n-terms recurrence relation 
between matrix elements (10). Not so infrequently, in many applications, one needs 
integrals (10) of families of functions Q,(x) leading to two-terms expansions (9) with 
c (  t, m )  = y (  t )  = 0 (or a ( t ,  m )  = a (  t )  = 0). Such is the case, for instance, of the hydro- 
genic ( r ' )  or, more generally, the ( r '  exp(qr) sin (p r ) )  radial integrals, of the diatomic 
vibration-rotation ( r ' )  or ( r '  exp( qr))  and ( r '  exp( qr )  cos( pr)) nuclear integrals within 
the harmonic oscillator model (type D factorisation), of the (exp(-rr)) or (exp(-tr+ 
qe')) nuclear integrals within the Morse-Pekeris model (type B factorisation) (see, for 
instance, Badawi et al 1973, 1974) and of several other models. 

As a first illustrative example, we shall apply hereafter the recurrence relation (1 1) 
to the particular case of the ( j '  = j ,  m ' =  m )  integrals ( l o ) ,  denoted hereafter X,, Y,, 2, 
and W,, and  consider Q,(x) functions leading to expansion formulae (9) with c( t ,  m )  = 

y ( t )  = O .  In that case, relations (11) reduce to W, = Y, and 
(CY - 2a)X,-,  + ( p  - 2 b)X, + 2A Y, = 0 

2A2 + p ( p  + 2b) 2'i2 -2A(p+2b) ( a  -2a)X,-,  
= A - '  2 A2 2 . l 2 + P ( P - 2 b )  2,1(p-2b) ( a + 2 ~ ) 2 , _ ,  (13) 

A(p + 2 6 )  -A(@ -26)  p 2  - 4b2 Y,-1 

(a  + 2a)Z,  - + ( p  + 2 6 12, - 2A Y, = 0 

a Y, - + p Y, - AX, + .U, = 0 

4. Closed-form expressions of the 'curved-space' hydrogenic pseudoradial integrals 

The interest building up  a tractable 'curved-orbital' model (non-relativistic or relativis- 
tic) capable of exploring some space-curvature modifications of the atomic spectrum 
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has been outlined in a series of papers (Bessis and Bessis 1979, 1983, Bessis et a1 1982, 
1984,1986). In that model, which, in many respects, may be considered as a preliminary 
step for further investigations of the gravitational modifications of the spectrum 
involving more elaborate curved spaces, the usual three-dimensional Euclidean flat 
space is simply substituted by a space of constant positive curvature, i.e. a three- 
dimensional hypersphere of radius R embedded in a four-dimensional Euclidean space. 
A direct parallel between 'curved-space' and 'flat-space' results is kept and, at the 
asymptotic flat-space limit, as R + CO, ,y + 0 such that Rx = r, the 'curved-space' solutions 
of quantum mechanical problems in hyperspherical coordinates (x, 8, 4)  converge 
towards the flat-space solutions in polar coordinates ( r ,  8,4). Nevertheless, even for 
the case of one-electron atoms, closed-form expressions of many integrals are required 
in order to put in evidence the specific dependence of the space-curvature modifications 
of the spectrum in terms of the quantum numbers and are not still available. 

After setting Q n l W ( x ,  8, 4)  = (1/R sin x ) ' P ( x )  YlM(8,  4), the determination of the 
hydrogenic orbitals in a space of constant positive curvature, leads to the solution 
of the following Infeld-Hull type E (class I )  factorisable equation (Schrodinger 1940a) 

where m = 1, j = n - 1 and  A, = 2R2E, + 1 is related to the electronic energy E,,. 

der and factorisation functions are 

(d2 /dx2  - m ( m  + l ) / s in2  x +2ZR cot x + Aj)'Py(x) = 0 (15) 

The quantisation condition is j - m = n - 1 - 1 = L' = integer 3 0. The associated lad- 

K ( x, m ) = m cot x - ZR / m 

L ( m )  = m'-Z2R2/m'  
For class I, A, = L ( j +  1) and  one obtains (in atomic units) E ,  = - Z 2 / 2 n 2 +  (n'- 1)/2R2. 

From our previous studies, it can be inferred that, in fact, the determination of 
much of the integrals (Qf(x)), which we need in atomic structure calculations, can be 
ultimately reduced to the evaluation of the integrals ((sin x)' cos( t x ) )  and 
((sin x)' sin( t x ) ) .  This is the case, for instance, for the Coulombic interaction (cot x), 
for the fine and hyperfine structure parameters (Bessis and Bessis 1983) and for many 
others involved in the interaction between atoms and  external electromagnetic fields 
(Bessis er a1 1986). 

If one considers the set of the generating functions Qf(x) = (sin x)' exp(-itx), it 
is easily checked that relations (9)  are fulfilled with a(?,  m )  = m, b ( t ,  m )  = -ZR/m -im, 
a ( ? )  = t, p ( t )  = -2ir and c ( t ,  m )  = y ( t )  = 0. Then, setting t = 0 in (12), after noting 
that Qo(x )  = 1 and that the eigenfunctions ";(x) are assumed to be normalised, one 
obtains 

X,=Z,=l 

X -  , = Z- = (A, ( m 1 Yo - 6 ( m ) )/ a ( m ) 
Since the same expression (17) holds for XI = ( j m  1 Q-, 1 j m )  and Z-, = 
( j m  - 1 I Q-, Ijm - l) ,  it follows that this expression must be independent of m. Noting 
that for class I problems A j ( J  + 1) = 0, one obtains 

X . . ,  = Z- = - b( t, j + 1 ) / a  ( t ,  j + 1) 

and, after introducing the usual quantum numbers I and n, one obtains 
(n l  1 cot x 1 nl )  = ZR/  n' 
( n I / n l -  1)=ZR11Z-'(l/n2- 1/12) 
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Note that closed-form expressions of the pseudoradial VY(x) functions are known 
(Bessis and Bessis 1979), i.e. 

VY(x) = N,,(sin x)' exp[-ZRX/(j+ l)]PI"."*'(-i cot x )  (24) 

where w = -( j + 1) - iZR/(  j + 1) and, in spite of the presence of the imaginary quan- 
tities, the Jacobi polynomial P$"*)( ) of degree U = j - m = n - 1 - 1 is a real polynomial 
in co tx  and is a normalisation constant. Nevertheless, since w and w* are 
non-integer, the computation of integrals such as (18)  cannot be easily performed by 
a brute termwise integration. 

Formulae (12) also work nicely to find again the closed-form expressions of the 
hydrogenic classical (nl I r' I nl) and (n l  I r' I nl - 1) radial integrals and to compute the 
radial (nll r' exp( - q r )  cos ( p r )  I nl ) ,  
( n l  I r' exp( - q r )  sin( p r )  I nl - 1) and (nl I r' exp( - q r )  cos( p r )  1 nl - 1). 

Indeed, the hydrogenic radial functions are Rnt( I )  = ( l / r ) V n t (  r )  where the V( r )  
functions are solutions of the type F (class I )  factorisable equation 

integrals (nl I r' exp( - q r )  sin( p r )  I nl) ,  

(d2/dr2 - m (  m + 1 ) /  r z +  2 Z /  r + i , )Vy( r )  = 0 O s r < m  (25)  

where m = 1, j = n - 1 and i, = 2 E i .  
The associated ladder and factorisation functions are K ( r ,  m )  = m /  r - Z/ m, L( m )  = 

- Z 2 / m 2  and, as a consequence, x, = L ( j +  1 )  = -Z2/(j+ 1 ) 2  and En = -Z2/2n2.  
I t  is easily checked that relations (9)  are fulfilled by Q , ( r )  = r' with a(t,  m )  = m, 

b( t ,  m )  = - Z / m ,  a( t )  = t and p = c = y = 0. Relations (18) still hold for the flat-space 
integrals and again give the previously known expressions for ( 1 /  
integral, respectively: 

) and the overlap 

(26) 

4)  and obtains the where A,, = ( L (  n )  - L( I ) )  = Z (  n2 - 1 2 ) " 2 /  nl. Since p = 0, one uses ( 
following recurrence formulae which, together with (26), allow the determination in 
closed form of the hydrogenic (d 1 r' 1 nl) and (nl I r' 1 nl - 1) integrals, for any value of 

- n 2 t ( t  + 2)(4i2 - ( t  + 1)')(nll r ' - l l  n l -  1 ) .  

Of course, for this classical case, recurrence relations such as (27) are known for 
a long time (see, for instance, Durand 1970). They can also be obtained by means of 
hypervirial relations (see, for instance, Killingbeck 1978). 

On the other hand, if one considers the set of generating functions Q , ( r ) =  
r' exp( - q r ) ,  where q is an arbitrary (real or complex) constant, relations (9) are fulfilled 
with a ( t , m ) = m ,  b ( t , m ) = - Z / m ,  c r ( t ) = t ,  P ( t ) = - q  and c ( t , m ) = y ( t ) = O .  Hence, 
one can apply relation (13) in order to obtain the integrals X ,  and Y, in terms of X , ,  
2, and Yo= ( A / p ) ( X o - Z 0 )  (see the last equation (12) for t =O). Closed-form 
expressions of X o  (and/or Z,) are given by Gradshteyn and Ryzhik (1965). 



Algebraic recursive determination of matrix elements 5753 

Let us note that, for any derivable functionf(x), since [d/dx,fl  = df/dx, one easily 

(28 1 
In many cases, this expression can be used in order to obtain analytical expressions 

For instance, it is easily checked that the curved-space hydrogenic integrals (22) 

(29) 

When dealing with the classical hydrogenic radial integrals, the following relation 

obtains from (4) the following expression: 

( j m  I df/dx I j m  - 1) = A j ( m ) ( ( j m  I f  ( x )  I j m )  - ( j m  - 1 I f  ( x )  ljm - 1)). 

of the off-diagonal integrals Y, = ( j m  I Q, 1 j m  - 1 ) .  

satisfy the relation 

(nl /sin x cos x I n l -  1 )  = fA,,,((nl(sin2 x /  n l ) - ( n l  - 1 Isin' x 1 n l -  1 ) )  

where A,,, is given in (19). 

can be used: 

( n ~ ~ r ' ~ n ~ - l ) = ( t + l ) - ' ~ ~ , ( ( n ~ ~ r ' + ' ~ n ~ ) - ( n ~ - l ~ r ' + ' ~ n ~ - l ) )  (30) 

where A,,, is given in (26). 

5. Conclusion 

Finally, it has been shown how one can establish recurrence formulae for computing 
matrix elements of Q,( x )  functions between eigenfunctions qI,Jm(x) of factorisable 
equations, as long as the Q,(x) functions satisfy relations such as (9). The procedure 
is valid for all types (A-F) of factorisation and is sufficiently versatile. Particularly, 
these recurrence formulae have allowed the determination of analytical expressions 
of the hydrogenic curved-space ((sin x)' exp(itx)) integrals and flat-space ( $ r f )  integrals 
without having to perform any quadrature. One part of the versatility of the technique 
comes from the fact that the choice of the Q,(x) functions is not unique. For 
instance, recurrence formulae ( 1  1) can be used for computing the curved-space 
((s inx) 'exp(qx)( tanx) ' )  integrals ( a ( r ,  m)= m, b( t ,  m ) = Z R / m ,  a(?)= t + p ,  P ( t ) =  
ZR, y ( t )  = t and c ( t ,  m )  = 0 )  or the ((sinx)P exp(qx)[tan(x/2)]') integrals ( a ( ? ,  m )  = 
m/2, b( t ,  m )  = Z R /  m, c( t,  m )  = - m/2, a ( 1 )  = ( t + p)/2,  p ( t )  = q, and y (  t ) = ( t - p)/2).  

I t  should be noted that formulae ( 1 1 )  may be useful not only for the E or F 
factorisation types but also in several other cases, such as for the computation of the 
type A ([tan(x/2)]t) integrals, the type B (exp(-tx)) integrals, the type C or type D 
(x')  integrals and, more generally, for the computation of the (g(x)Q,(x)) integrals 
where g(x)  = (sin ~ ) ~ [ t a n ( x / 2 ) ] ~ ,  exp( -px + q e"), xp exp( 9x2) and exp( qx2+px) for 
types A, B, C and D, respectively, and where p ,  9 are arbitrary constants. 

The eigenfunctions q ; (x )  themselves can be considered as Q,(x) functions. Indeed, 
from (41, it is easily checked that they satisfy relations such as (9). For instance, for 
the case of the curved-space hydrogenic pseudoradial eigenfunctions, one obtains 

K ( x ,  m)VI:=[m/(2t+l)]A,(t)q:-'+[ZR/m - Z R m / t ( t + l ) ] q ;  

+[m/(2f+l ) ]A, ( f+l )q;+'  
(31) 

(d /dx)q ;  =i[ l -  ( 2 p  - 1) / (2 t+  l ) ] A , ( f ) q J - '  +[ZR( p - l ) / t (  t +  1 )  - 9])v; 

-$[1+(2p - 1) / (2t+  1)]'2,( t + I)YJ+'. 

The same relations hold for the flat-space hydrogenic radial functions q J ( r )  (with 2 
in the place of ZR and the r variable in the place of the x variable). 
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Let us remark that, since A,(r + 1) = 0, the ‘key’ curved-space or the classical 
hydrogenic eigenfunctions q: satisfy two-terms expansions (9) with c = y = 0. This 
result holds for the other (B-D) factorisation types and class I or class I1 problems 
(for class I A,(r + 1) = 0, c = y = 0 and for class I1 A , ( t )  = 0, a = a = 0). Nevertheless, 
an efficient application of the present technique to the determination of analytical 
expressions of the integrals over the product of three eigenfunctions of factorisable 
equations requires some more elaborate investigation. Computer programs which 
perform algebraic manipulations, such as R E D U C E ”  or MACSYMAS, would greatly help 
in that respect. 

As a last remark, let us point out that formula (11) is still valid within all the 
extended factorisation schemes, i.e. when using the ‘embedded’ factorisation device 
or when using the perturbed ladder operator method. Indeed, in both cases, the 
‘embedded’ eigenfunctions which depend on the artificial parameter or the ‘perturbed’ 
eigenfunctions are still solutions of a couple of first-order diff erence-diff erential 
equations (4) and vanish at the bounds (Infeld and Hull 1951, Bessis et a1 1980, 1981, 
1983). Nevertheless, within the perturbed ladder operator framework, the expression 
of the ladder function may become rather intricate and an adequate choice of Q(x)  
functions leading to short finite expansions (9) may be more problematic. 
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